کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5091230 | 1375667 | 2007 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mean-variance portfolio selection with 'at-risk' constraints and discrete distributions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم انسانی و اجتماعی
اقتصاد، اقتصادسنجی و امور مالی
اقتصاد و اقتصادسنجی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We examine the impact of adding either a VaR or a CVaR constraint to the mean-variance model when security returns are assumed to have a discrete distribution with finitely many jump points. Three main results are obtained. First, portfolios on the VaR-constrained boundary exhibit (KÂ +Â 2)-fund separation, where K is the number of states for which the portfolios suffer losses equal to the VaR bound. Second, portfolios on the CVaR-constrained boundary exhibit (KÂ +Â 3)-fund separation, where K is the number of states for which the portfolios suffer losses equal to their VaRs. Third, an example illustrates that while the VaR of the CVaR-constrained optimal portfolio is close to that of the VaR-constrained optimal portfolio, the CVaR of the former is notably smaller than that of the latter. This result suggests that a CVaR constraint is more effective than a VaR constraint to curtail large losses in the mean-variance model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Banking & Finance - Volume 31, Issue 12, December 2007, Pages 3761-3781
Journal: Journal of Banking & Finance - Volume 31, Issue 12, December 2007, Pages 3761-3781
نویسندگان
Gordon J. Alexander, Alexandre M. Baptista, Shu Yan,