| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5095820 | 1376486 | 2016 | 17 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Series estimation under cross-sectional dependence
												
											ترجمه فارسی عنوان
													برآورد سری زیر وابستگی مقطعی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آمار و احتمال
												
											چکیده انگلیسی
												An asymptotic theory is developed for series estimation of nonparametric and semiparametric regression models for cross-sectional data under conditions on disturbances that allow for forms of cross-sectional dependence and heterogeneity, including conditional and unconditional heteroscedasticity, along with conditions on regressors that allow dependence and do not require existence of a density. The conditions aim to accommodate various settings plausible in economic applications, and can apply also to panel, spatial and time series data. A mean square rate of convergence of nonparametric regression estimates is established followed by asymptotic normality of a quite general statistic. Data-driven studentizations that rely on single or double indices to order the data are justified. In a partially linear model setting, Monte Carlo investigation of finite sample properties and two empirical applications are carried out.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 190, Issue 1, January 2016, Pages 1-17
											Journal: Journal of Econometrics - Volume 190, Issue 1, January 2016, Pages 1-17
نویسندگان
												Jungyoon Lee, Peter M. Robinson, 
											