کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5096959 | 1376560 | 2010 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Additive cubic spline regression with Dirichlet process mixture errors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
Metropolis–HastingsDirichlet process mixtureMarginal likelihood - احتمال عدالتOrdinal data - داده های عمومیAdditive regression - رگرسیون افزایشیNon-parametric regression - رگرسیون غیر پارامتریMarkov chain Monte Carlo - زنجیره مارکف مونت کارلوBayes factors - فاکتور BayesModel comparison - مقایسه مدلCubic spline - هلی کوپترDirichlet process - پروسه Dirichlet
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The goal of this article is to develop a flexible Bayesian analysis of regression models for continuous and categorical outcomes. In the models we study, covariate (or regression) effects are modeled additively by cubic splines, and the error distribution (that of the latent outcomes in the case of categorical data) is modeled as a Dirichlet process mixture. We employ a relatively unexplored but attractive basis in which the spline coefficients are the unknown function ordinates at the knots. We exploit this feature to develop a proper prior distribution on the coefficients that involves the first and second differences of the ordinates, quantities about which one may have prior knowledge. We also discuss the problem of comparing models with different numbers of knots or different error distributions through marginal likelihoods and Bayes factors which are computed within the framework of Chib (1995) as extended to DPM models by Basu and Chib (2003). The techniques are illustrated with simulated and real data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 156, Issue 2, June 2010, Pages 322-336
Journal: Journal of Econometrics - Volume 156, Issue 2, June 2010, Pages 322-336
نویسندگان
Siddhartha Chib, Edward Greenberg,