کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5096964 1376560 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient estimation of probit models with correlated errors
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Efficient estimation of probit models with correlated errors
چکیده انگلیسی
Maximum Likelihood (ML) estimation of probit models with correlated errors typically requires high-dimensional truncated integration. Prominent examples of such models are multinomial probit models and binomial panel probit models with serially correlated errors. In this paper we propose to use a generic procedure known as Efficient Importance Sampling (EIS) for the evaluation of likelihood functions for probit models with correlated errors. Our proposed EIS algorithm covers the standard GHK probability simulator as a special case. We perform a set of Monte Carlo experiments in order to illustrate the relative performance of both procedures for the estimation of a multinomial multiperiod probit model. Our results indicate substantial numerical efficiency gains for ML estimates based on the GHK-EIS procedure relative to those obtained by using the GHK procedure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 156, Issue 2, June 2010, Pages 367-376
نویسندگان
, ,