کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5103309 | 1480107 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A vertex similarity index for better personalized recommendation
ترجمه فارسی عنوان
یک شاخص شباهت ریشه برای توصیه بهتر شخصی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
چکیده انگلیسی
Recommender systems benefit us in tackling the problem of information overload by predicting our potential choices among diverse niche objects. So far, a variety of personalized recommendation algorithms have been proposed and most of them are based on similarities, such as collaborative filtering and mass diffusion. Here, we propose a novel vertex similarity index named CosRA, which combines advantages of both the cosine index and the resource-allocation (RA) index. By applying the CosRA index to real recommender systems including MovieLens, Netflix and RYM, we show that the CosRA-based method has better performance in accuracy, diversity and novelty than some benchmark methods. Moreover, the CosRA index is free of parameters, which is a significant advantage in real applications. Further experiments show that the introduction of two turnable parameters cannot remarkably improve the overall performance of the CosRA index.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 466, 15 January 2017, Pages 607-615
Journal: Physica A: Statistical Mechanics and its Applications - Volume 466, 15 January 2017, Pages 607-615
نویسندگان
Ling-Jiao Chen, Zi-Ke Zhang, Jin-Hu Liu, Jian Gao, Tao Zhou,