کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5103718 1480530 2017 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximate likelihood estimation of spatial probit models
ترجمه فارسی عنوان
برآورد تقریبی احتمال مدل های فضایی
کلمات کلیدی
پروبیات فضایی، احتمالهای چند متغیره، مدل رگرسیونی فضایی، مدل خطای فضایی، مدل انتخاب گسسته فضایی،
موضوعات مرتبط
علوم انسانی و اجتماعی اقتصاد، اقتصادسنجی و امور مالی اقتصاد و اقتصادسنجی
چکیده انگلیسی
A new estimation method for spatial binary probit models is presented. Both spatial auto-regressive (SAR) and spatial error (SEM) models are considered. The proposed estimator relies on the approximation of the likelihood function, that follows a multivariate normal distribution which parameters depend on the spatial structure of the observations. The approximation is inspired by the univariate conditioning procedure proposed by Mendell and Elston, with some modifications to improve accuracy and speed. Very accurate parameter estimations have been achieved in reasonable time for simulated data samples with as much as one million observations. The lessons learned in the Monte Carlo experiment have been applied to a case study on urban sprawl over more than forty thousands plots in Southern France.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Regional Science and Urban Economics - Volume 64, May 2017, Pages 30-45
نویسندگان
, ,