کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5129846 1489856 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling
چکیده انگلیسی
We study random series priors for estimating a functional parameter f∈L2[0,1]. We show that with a series prior with random truncation, Gaussian coefficients, and inverse gamma multiplicative scaling, it is possible to achieve posterior contraction at optimal rates and adaptation to arbitrary degrees of smoothness. We present general results that can be combined with existing rate of contraction results for various nonparametric estimation problems. We give concrete examples for signal estimation in white noise and drift estimation for a one-dimensional SDE.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 123, April 2017, Pages 93-99
نویسندگان
, ,