کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
513 46 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Shape-dependent cell migration and focal adhesion organization on suspended and aligned nanofiber scaffolds
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Shape-dependent cell migration and focal adhesion organization on suspended and aligned nanofiber scaffolds
چکیده انگلیسی

In the body, cells dynamically respond to chemical and mechanical cues from the extracellular matrix (ECM), yet precise mechanisms by which biophysical parameters (stiffness, topography and alignment) affect cell behavior remain unclear. Here, highly aligned and suspended multilayer polystyrene (PS) nanofiber scaffolds are used to study biophysical influences on focal adhesion complex (FAC) arrangement and associated migration behavior of mouse C2C12 cells arranged in specific shapes: spindle, parallel and polygonal. Furthermore, the role of cytoskeletal-altering drugs including blebbistatin, nocodazole and cytochalasin-D on FAC formation and migratory behavior is investigated. For the first time, this work reports that cells on suspended fiber networks, including cells with administered drugs, elongated along the fiber axes and developed longer (∼ 4×) and more concentrated FAC clusters compared to cells on flat PS control substrates. Additionally, substrate designs which topographically restrict sites of cell attachment and align adhesions were found to promote higher migration speeds (spindle: 52 μm h−1, parallel: 39 μm h−1, polygonal: 25 μm h−1, flat: 32 μm h−1). This work demonstrates that suspended fiber topography-induced concentration of FACs along fiber axes generates increased migration potential as opposed to flat surfaces, which diffuse and randomly orient adhesions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 9, Issue 7, July 2013, Pages 7169–7177
نویسندگان
, , , ,