کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5145237 1497339 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance prediction of plate-fin radiator for low temperature preheating system of proton exchange membrane fuel cells using CFD simulation
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Performance prediction of plate-fin radiator for low temperature preheating system of proton exchange membrane fuel cells using CFD simulation
چکیده انگلیسی
The objective of this paper is to analyze the heat transfer characteristics of plate-fin radiator for the cold air heating system of a PEMFC engine and to find the optimal parameter combination in order to reduce the power consumption. The effect of the coolant mass flow and temperature on the heat exchange performance of the radiator was investigated based on 3D porous medium model. The results, including the amount of heat transferred and temperature change and heat exchanger effectivity with the increasing of the air flow rate at different coolant flow rate were obtained using CFD method. Good agreement is found by comparing the simulation values with the test data and the deviation is less than 7% which indicate simulation model validation and research method feasibility used in this study. The simulation results indicate that bigger coolant flow rate and temperature result in higher outlet air temperature and the amount of heat transferred. The variation of the heat exchanger effectivity is predicted for different working conditions. Based on the Taguchi method, the influence of structural parameters of the corrugated fins on the heat transfer and pressure drop of the radiator is analyzed qualitatively. It is shown that fin length has the greatest impact on the comprehensive heat transfer performance of the radiator. This research provides a guide for optimizing the air preheating system and improving the amount of heat transferred.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 42, Issue 38, 21 September 2017, Pages 24504-24516
نویسندگان
, , , ,