کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5146203 1497348 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Selective catalytic fast pyrolysis of Jatropha curcas residue with metal oxide impregnated activated carbon for upgrading bio-oil
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Selective catalytic fast pyrolysis of Jatropha curcas residue with metal oxide impregnated activated carbon for upgrading bio-oil
چکیده انگلیسی
Jatropha curcas waste was subjected to catalytic pyrolysis at 873 K using an analytical pyrolysis-gas chromatography/mass spectrometry in order to investigate the relative effect of various metal oxide/activated carbon (M/AC) catalysts on upgrading bio-oil from fast pyrolysis vapors of Jatropha waste residue. A commercial AC support was impregnated with Ce, Pd, Ru or Ni salts and calcined at 523 K to yield the 5 wt.% M/AC catalysts, which were then evaluated for their catalytic deoxygenation ability and selectivity towards desirable compounds. Without a catalyst, the main vapor products were fatty acids of 60.74% (area of GC/MS chromatogram), while aromatic and aliphatic hydrocarbon compounds were presented at only 11.32%. Catalytic pyrolysis with the AC and the M/AC catalysts reduced the oxygen-containing (including carboxylic acids) products in the pyrolytic vapors from 73.68% (no catalyst) to 1.60-36.25%, with Ce/AC being the most effective catalyst. Increasing the Jatropha waste residue to catalyst (J/C) ratio to 1:10 increased the aromatic and aliphatic hydrocarbon yields in the order of Ce/AC > AC > Pd/AC > Ni/AC, with the highest total hydrocarbon proportion obtained being 86.57%. Thus, these catalysts were effective for deoxygenation of the pyrolysis vapors to form hydrocarbons, with Ce/AC, which promotes aromatics, Pd/AC and Ni/AC as promising catalysts. In addition, only a low yield (0.62-7.80%) of toxic polycyclic aromatic hydrocarbons was obtained in the catalytic fast pyrolysis (highest with AC), which is one advantage of applying these catalysts to the pyrolysis process. The overall performance of these catalysts was acceptable and they can be considered for upgrading bio-oil.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 42, Issue 29, 20 July 2017, Pages 18397-18409
نویسندگان
, , ,