کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5146363 1497370 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy
چکیده انگلیسی
Multiphase transport inside a proton exchange membrane electrolyzer cell (PEMEC) plays an important role in its performance and design. Most PEMEC modeling studies so far have mainly focused on its electrochemical performance prediction and analysis, and fundamental understanding of the effect of multiphase transport on the cell performance is still lacking. In this study, a two-phase mathematical model is developed to investigate the transport properties inside liquid/gas diffusion layers (LGDLs) and to explore their effects on the PEMEC voltage and efficiency. Sudden changes in the PEMEC voltage and efficiency are captured for the first time as the current density reaches a limiting value, and the limiting current density is greatly impacted by the LGDL contact angle, porosity, and thickness. In addition, the liquid water distribution and cell performance in PEMECs with different important operating and physical parameters are examined and discussed in detail. Increasing the LGDL porosity or/and decreasing its surface contact angle will improve the PEMEC performance especially at the high current density. The thickness changes of the LGDL and membrane also have significant impacts on the cell voltage and efficiency. The model can effectively examine two-phase transport properties and provide useful information for design optimization of a PEMEC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 42, Issue 7, 16 February 2017, Pages 4478-4489
نویسندگان
, , , , , ,