کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5178291 1502492 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finsler geometry modeling and Monte Carlo study of 3D liquid crystal elastomer
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Finsler geometry modeling and Monte Carlo study of 3D liquid crystal elastomer
چکیده انگلیسی


- A Finsler geometry model for liquid crystal elastomer (LCE) is presented.
- Monte Carlo simulations are performed for soft elasticity and elongation phenomena.
- The results for the soft elasticity and elongation are consistent with existing experimental data.

We study a three-dimensional (3D) liquid crystal elastomer (LCE) in the context of Finsler geometry (FG) modeling, where FG is a mathematical framework for describing anisotropic phenomena. The LCE is a 3D rubbery object and has remarkable properties, such as the so-called soft elasticity and elongation, the mechanisms of which are unknown at present. To understand these anisotropic phenomena, we introduce a variable σ, which represents the directional degrees of freedom of a liquid crystal (LC) molecule. This variable σ is used to define the Finsler metric for the interaction between the LC molecules and bulk polymers. Performing Monte Carlo (MC) simulations for a cylindrical body between two parallel plates, we numerically find the soft elasticity in MC data such that the tensile stress and strain are consistent with reported experimental results. Moreover, the elongation is also observed in the results of MC simulations of a spherical body with free boundaries, and the data obtained from the MC simulations are also consistent with existing experimental results.

274

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer - Volume 114, 7 April 2017, Pages 355-369
نویسندگان
, ,