کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5180075 1502533 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Manipulating characteristic timescales and fiber morphology in simultaneous centrifugal spinning and photopolymerization
ترجمه فارسی عنوان
زمانبندی مشخصه ها و مورفولوژی فیبر در چرخش و فتوپلیمرسیون گشتاور همزمان
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
چکیده انگلیسی


• Fibers were fabricated using in-situ photopolymerization and centrifugal spinning.
• Material and process parameters crucial for fiber morphologies were identified.
• Timescales associated with various morphologies were quantified.
• A predictive operating diagram was developed for this reactive spinning system.

In this study, the fabrication of crosslinked nonwoven fibers via simultaneous thiol-ene photopolymerization and spinning of monomer jets has been demonstrated in centrifugal Forcespinning for the first time. We observed that simultaneous Forcespinning and photopolymerization resulted in a wide variety of fiber morphologies including beads, beads-on-string, uniform fiber, fused fibers, and well-cured fibers. To elucidate the underlying mechanisms and parameter interactions that give rise to these morphologies, we systematically varied the light intensity, solution elasticity, and spin speed of the Forcespinning process. From these experimental results, an operating diagram was constructed based on the measured process parameters, their respective timescales, and observed effects on fiber morphology. While numerous parameters can individually affect fiber formation and morphology, the interplay between curing kinetics, solution viscoelasticity, and orifice-to-collector processing time window is also crucial in this process. Smooth and well-cured fibers were formed only when the photopolymerization occurred sufficiently quickly, before both the breakup of fibers into droplets due to a surface tension driven Rayleigh instability and the deposition of fibers on the collector. Our findings can serve as a predictive guideline for the fabrication of crosslinked fibers with desired morphology, the implementation of the in-situ polymerization and spinning concept into other commercial fiber manufacturing technologies, and the adaptation of other functional or high performance monomer systems.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer - Volume 73, 2 September 2015, Pages 42–51