کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5184176 | 1381041 | 2011 | 8 صفحه PDF | دانلود رایگان |

Skeletal muscle regeneration usually causes scar tissue formation and loss of function, an alternative method is needed. In this study, poly(É-caprolactone), multi-walled carbon nanotubes, and (83/17, 60/40, 50/50, and 40/60) poly(acrylic acid)/poly(vinyl alcohol) (PCL-MWCNT-PAA/PVA) were coaxially electrospun to create scaffolds. All four were conductive; however, not all scaffolds actuated when electrically stimulated. The best response occurred when 20Â V was applied. A biocompatibility study where skeletal muscle cells were exposed to 0, 0.14%, and 0.7% MWCNT showed that these concentrations were low enough to not cause harm over a four week period. All scaffolds were biocompatible but, the 40/60 scaffolds had more cells. Fluorescent staining showed large clusters of multinucleated cells with actin interaction. Although scaffold tensile properties are greater than skeletal muscle, our other results show that with more modification to cause contraction instead of bending this combination of materials may show promise as components in an artificial muscle.
Journal: Polymer - Volume 52, Issue 21, 29 September 2011, Pages 4736-4743