کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5185867 | 1381089 | 2009 | 5 صفحه PDF | دانلود رایگان |

Highly hydrophilic polyurethane elastomers (PUEs) were synthesized from 1,2-bis(isocyanate) ethoxyethane (TEGDI), poly(ethylene oxide-co-propylene oxide) copolyol (EOPO) and 1,4-butane diol/1,1,1-trimethylol propane (75/25) (wt/wt) by a prepolymer method. 4,4â²-Diphenylmethane diisocyanate (MDI)-based PUEs were synthesized as a control as well. Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) measurements revealed that the degree of microphase separation of the TEGDI-based PUEs was much weaker than for the MDI-based PUEs. Young's modulus and elongation at break of the TEGDI-based PUEs were quite lower and larger than for the MDI-based PUEs, respectively. This is due to quite weak cohesion force of the hard segment chains in the TEGDI-based PUEs. The degree of swelling of the TEGDI-based PUEs was five times larger than for the MDI-based one. This is associated with the hydrophilic nature of TEGDI and weak cohesion force in the TEGDI-based PUEs.
Journal: Polymer - Volume 50, Issue 15, 17 July 2009, Pages 3693-3697