کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5188233 1381149 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of the glass transition temperature of (meth)acrylic polymers containing phenyl groups by recursive neural network
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Prediction of the glass transition temperature of (meth)acrylic polymers containing phenyl groups by recursive neural network
چکیده انگلیسی
A recursive neural network QSPR model that can take directly molecular structures as input was applied to the prediction of the glass transition temperature of 277 poly(meth)acrylates. This model satisfactorily predicted the chemical-physical properties of high and low molecular weight acyclic compounds. However, side-chain benzene rings are present in about one half of the selected polymers. In order to render cyclic structures, the molecular representation through hierarchical structures was extended by two methods, named group and cycle breaking, respectively. The latter approach exploits standard unique molecular description systems, i.e. Unique SMILES and InChI. In all cases the prediction was very good, with 15-16 K mean absolute error and 19-21 K standard deviation. This result confirms the robustness of our method with respect to the inclusion of different structures. Moreover, the good performance of the cycle breaking representation paves the way for the investigation of data sets that contain a variety of poorly sampled cyclic structures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer - Volume 48, Issue 24, 16 November 2007, Pages 7121-7129
نویسندگان
, , , , , ,