کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5188797 | 1381169 | 2006 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Counterion dependent crystallization kinetics in blends of a perfluorosulfonate ionomer with poly(vinylidene fluoride)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آلی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Blends of poly(vinylidene fluoride) (PVDF) with a perfluorosulfonate ionomer, Nafion®, have been prepared and examined in terms of the crystallization kinetics of the PVDF component. In blends of PVDF with Na+-form Nafion®, the rates of bulk crystallization, as observed by DSC, and the spherulitic growth rates of the PVDF component, as observed using optical microscopy, were found to be very similar to that of pure PVDF. This behavior was attributed to the course phase separation of Na+-form Nafion® from PVDF and melt incompatibility of the physically cross-linked ionomer with the crystallizable component. In this segregated state, the PVDF component of the blend is allowed to crystallize in pure phases that are isolated under the influence of Nafion®. In contrast, when the ionomer was exchanged with more weakly interacting quaternary alkylammonium counterions, a decrease in both the rate of bulk crystallization and spherulitic growth was observed. Furthermore, the crystallization kinetics of PVDF in these blends was found to be dependent on the counterion size; as the size of counterions associated with the Nafion® component increased, the rate of crystallization decreased. This behavior was attributed to a weakening of the electrostatic interactions in the ionomer phase and thus an increase in the extent of phase mixing with the larger ions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer - Volume 47, Issue 21, 4 October 2006, Pages 7425-7435
Journal: Polymer - Volume 47, Issue 21, 4 October 2006, Pages 7425-7435
نویسندگان
Eric P. Taylor, Forrest A. Landis, Kirt A. Page, Robert B. Moore,