کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5201927 | 1502912 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Plasticizer migration from PVC cable insulation - The challenges of extrapolation methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آلی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A single strand PVC-P insulation including an internal metal conductor removed from the jacketed assemblies of a signal cable showed brittleness after 30 years service at 25 ± 3 °C in air. The PVC compound contained diisodecyl phthalate (DIDP), di(2-ethylhexyl) phthalate (DEHP) and a sizeable fraction of filler. Single strand insulation samples with internal metal conductor were aged in air at elevated temperatures for different periods of time after which the strain at break, the Young's modulus and the plasticizer content were assessed by tensile testing and liquid chromatography. Isothermal evaporation rates from pristine DIDP and DEHP and solutions of the two plasticizers were obtained by thermogravimetry. Data for Young's modulus, strain at break and plasticizer contents were extrapolated to service temperature using two different extrapolation methods, Arrhenius extrapolation (constant activation energy) and a method based on models by Langmuir, Clausius-Clapeyron and Kirchhoff. These methods assume that evaporation of plasticizers to the surrounding gas phase is the dominant deterioration mechanism. Both methods predicted only a minor decrease in plasticizer content after 30 years of ageing at 28 °C and thus a material with adequate mechanical properties. Liquid chromatography showed that the single strand cable samples contained a very low DIDP content (4 wt.%) and an anomalously high DEHP content; a finding that cannot be explained by the expected evaporative loss mechanism. It is suggested that DIDP was efficiently extracted by contact with a DEHP-rich interface at the insulation surface, a process which is active during plant operation, but could not be simulated by controlled laboratory accelerated ageing studies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer Degradation and Stability - Volume 101, March 2014, Pages 24-31
Journal: Polymer Degradation and Stability - Volume 101, March 2014, Pages 24-31
نویسندگان
E. Linde, U.W. Gedde,