کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5202680 1381907 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Flame retardancy of carbon nanofibre/intumescent hybrid paper based fibre reinforced polymer composites
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Flame retardancy of carbon nanofibre/intumescent hybrid paper based fibre reinforced polymer composites
چکیده انگلیسی

A hybrid nanopaper consisting of carbon nanofibre (CNF) and/or clay, polyhedral oligomeric silsesquioxane (POSS), ammonium polyphosphate (APP), has been fabricated through the papermaking process. The as-prepared hybrid nanopaper was then incorporated onto the surface of glass fibre (GF) reinforced polymer matrix composites through injection moulding. The morphologies of hybrid nanopapers with and without the polymer resin were characterized with scanning electron microscopy (SEM). The polymer resin penetrated the entire nanopaper under a high-pressure compressed air system. The thermal decomposition behaviour of hybrid nanopapers infused with resin was studied with real-time thermogravimetric analysis/Fourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of clay in the hybrid paper increased the char residues of the nanocomposites. The fire retardant performance of composite laminates incorporating hybrid nanopaper was evaluated by cone calorimeter testing using a radiant heat flux of 50 kW/m2. The cone test results indicated that the peak heat release rate (PHRR) decreased dramatically in the case of laminate composites incorporating CNF/clay/APP hybrid paper. However, the extent of reduction of PHRR of the composite laminates incorporated with CNF/POSS/APP hybrid paper was lower. The formation of compact char materials was observed on the surface of the residues and analyzed by SEM and X-ray photoelectron spectroscopy (XPS). The flame retardant mechanisms of hybrid nanopapers in composite laminates are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer Degradation and Stability - Volume 96, Issue 5, May 2011, Pages 760-770
نویسندگان
, , , , , , ,