کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5203877 | 1381943 | 2008 | 8 صفحه PDF | دانلود رایگان |

The thermal degradation behavior of novel ultra-fire-resistant polymers and copolymers containing deoxybenzoin units in the backbone was studied by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The polymers were synthesized by the polycondensation of 4,4â²-bishydroxydeoxybenzoin (BHDB) with isophthaloyl chloride (to give polyarylates), phenylphosphonic dichloride (to give polyphosphonates), and their mixtures (to give poly(arylate-co-phosphonate) copolymers). The thermal decomposition, under nitrogen conditions, of BHDB-polyarylate was characterized by a simultaneous degradation of both the bisphenolic (deoxybenzoin) and isophthalate sub-units, whereas a three-step decomposition phenomenon was observed for the BHDB-polyphosphonate. BHDB-polymers containing phosphonate groups in the backbone did not show any phosphorus-based volatile decomposition products, whereas the corresponding bisphenol A-based polyphosphonates released volatile decomposition products comprised mainly of phosphorus-containing compounds.
Journal: Polymer Degradation and Stability - Volume 93, Issue 6, June 2008, Pages 1059-1066