کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5204379 1381959 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process
چکیده انگلیسی
This paper is focused on in situ preparation of melamine cyanurate (MCA) nanoparticles from reaction of melamine (MEL) and cyanuric acid (CA) and their flame retardant polyamide 6 (PA6) composite in the extrusion process through a novel reactive processing method. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were utilized to characterize the in situ formed MCA nanoparticles and their blends with PA6. Introduction of pentaerythritol (LTP) and water-bound plasticizer dioctyl phthalate (DPT) into the extrusion reaction system greatly inhibits the evaporation of water required for melamine and cyanuric acid reaction at high temperature (higher than 180 °C), laying a foundation for successful in situ preparation of MCA through reactive processing. XRD and FT-IR measurements indicate that under the effect of pentaerythritol, dioctyl phthalate and water, melamine really reacts with cyanuric acid to in situ form MCA in extrusion process. The reaction degree is close to 100%. A very important finding through SEM is that the in situ formed MCA particles, which were found to have aspect ratio of about 7.5, radial size in the range of 70-300 nm (mostly 70-90 nm) and crystallite size of less than 22 nm, are uniformly dispersed in the matrix PA6 at nanoscale. The in situ formed MCA nanoparticles greatly improve the flame retardancy and the mechanical properties of flame-retarded PA6 materials, and the introduced plasticizer dioctyl phthalate also ameliorates the related impact property. The obtained flame-retarded PA6 materials have good comprehensive performance with flame retardancy UL-94 V-0 rating at 1.6 and 3.2 mm thickness, tensile strength 48.0 MPa, elongation at break 106.3% and Izod notched impact strength 8.92 kJ/m2. Compared with flame-retarded PA6 material with in situ formed MCA, the one prepared through conventional blending of PA6 with commercial MCA product has improved tensile strength but deteriorated impact strength and flame retardancy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polymer Degradation and Stability - Volume 91, Issue 11, November 2006, Pages 2632-2643
نویسندگان
, , , ,