کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521927 867798 2012 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-output local Gaussian process regression: Applications to uncertainty quantification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Multi-output local Gaussian process regression: Applications to uncertainty quantification
چکیده انگلیسی

We develop an efficient, Bayesian Uncertainty Quantification framework using a novel treed Gaussian process model. The tree is adaptively constructed using information conveyed by the observed data about the length scales of the underlying process. On each leaf of the tree, we utilize Bayesian Experimental Design techniques in order to learn a multi-output Gaussian process. The constructed surrogate can provide analytical point estimates, as well as error bars, for the statistics of interest. We numerically demonstrate the effectiveness of the suggested framework in identifying discontinuities, local features and unimportant dimensions in the solution of stochastic differential equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 17, 1 July 2012, Pages 5718–5746
نویسندگان
, ,