کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
526040 869056 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detecting anomalies in people’s trajectories using spectral graph analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Detecting anomalies in people’s trajectories using spectral graph analysis
چکیده انگلیسی

Video surveillance is becoming the technology of choice for monitoring crowded areas for security threats. While video provides ample information for human inspectors, there is a great need for robust automated techniques that can efficiently detect anomalous behavior in streaming video from single or multiple cameras. In this work we synergistically combine two state-of-the-art methodologies. The first is the ability to track and label single person trajectories in a crowded area using multiple video cameras, and the second is a new class of novelty detection algorithms based on spectral analysis of graphs. By representing the trajectories as sequences of transitions between nodes in a graph, shared individual trajectories capture only a small subspace of the possible trajectories on the graph. This subspace is characterized by large connected components of the graph, which are spanned by the eigenvectors with the low eigenvalues of the graph Laplacian matrix. Using this technique, we develop robust invariant distance measures for detecting anomalous trajectories, and demonstrate their application on real video data.


► Anomaly detection through the trajectory analysis with graph.based machine learning.
► Automatic transformation of trajectories in a graph using Voronoi tessellation.
► Novel similarity measure between graphs which accounts for geometrical invariants.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 115, Issue 8, August 2011, Pages 1099–1111
نویسندگان
, , , , ,