کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
526288 869089 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online adaptive radial basis function networks for robust object tracking
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Online adaptive radial basis function networks for robust object tracking
چکیده انگلیسی

Visual tracking has been a challenging problem in computer vision over the decades. The applications of visual tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. In this paper, we present a novel online adaptive object tracker based on fast learning radial basis function (RBF) networks. Pixel based color features are used for developing the target/object model. Here, two separate RBF networks are used, one of which is trained to maximize the classification accuracy of object pixels, while the other is trained for non-object pixels. The target is modeled using the posterior probability of object and non-object classes. Object localization is achieved by iteratively seeking the mode of the posterior probability of the pixels in each of the subsequent frames. An adaptive learning procedure is presented to update the object model in order to tackle object appearance and illumination changes. The superior performance of the proposed tracker is illustrated with many complex video sequences, as compared against the popular color-based mean-shift tracker. The proposed tracker is suitable for real-time object tracking due to its low computational complexity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 114, Issue 3, March 2010, Pages 297–310
نویسندگان
, , ,