کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527879 869405 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Anomalous video event detection using spatiotemporal context
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Anomalous video event detection using spatiotemporal context
چکیده انگلیسی

Compared to other anomalous video event detection approaches that analyze object trajectories only, we propose a context-aware method to detect anomalies. By tracking all moving objects in the video, three different levels of spatiotemporal contexts are considered, i.e., point anomaly of a video object, sequential anomaly of an object trajectory, and co-occurrence anomaly of multiple video objects. A hierarchical data mining approach is proposed. At each level, frequency-based analysis is performed to automatically discover regular rules of normal events. Events deviating from these rules are identified as anomalies. The proposed method is computationally efficient and can infer complex rules. Experiments on real traffic video validate that the detected video anomalies are hazardous or illegal according to traffic regulations.

Research highlights
► We define anomalous video event considering spatiotemporal context.
► We apply frequency-based data mining techniques to detect video anomaly.
► Anomalous event is detected from single object behaviors with arbitrary time length.
► Anomalous event is also detected for co-occurrence of multiple objects.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 115, Issue 3, March 2011, Pages 323–333
نویسندگان
, , , ,