کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532921 870017 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Similarity-based analysis for large networks of ultra-low resolution sensors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Similarity-based analysis for large networks of ultra-low resolution sensors
چکیده انگلیسی

By analyzing the similarities between bit streams coming from a network of motion detectors, we can recover the network geometry and discover structure in the human behavior being observed. This means that a low-cost network of sensors can provide powerful contextual information to building systems: improving the efficiency of elevators, lighting, heating, and cooling; enhancing safety and security; and opening up new opportunities for human-centered information systems. This paper will show how signal similarity can be used to calibrate a sensor network to accuracies below the resolution of the individual sensors. This is done by analyzing the similarity structures in the unconstrained movement of people in the observed space. We will also present our efficient behavior-learning algorithm that yields 90% correct behavior-detection in data from a sensor network comprised of motion detectors by employing similarity-based clustering to automatically decompose complex activities into detectable sub-classes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 39, Issue 10, October 2006, Pages 1918–1931
نویسندگان
, , ,