کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5369004 | 1388415 | 2006 | 5 صفحه PDF | دانلود رایگان |

We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3Â mol% Y2O3-doped ZrO2 (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6Â eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films.
Journal: Applied Surface Science - Volume 252, Issue 17, 30 June 2006, Pages 6013-6017