کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5428113 | 1508662 | 2015 | 16 صفحه PDF | دانلود رایگان |

- Bacillus spores and MS2 bacteriophage particles were aged with ozone and relative humidity.
- Changes in single particle fluorescence spectra and biological activity were measured.
- The largest changes in fluorescence were observed at high ozone concentration and high RH.
- A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH.
- Extracellular genomic material was destroyed on BtAH spores after exposure to ozone and RH.
Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150Â ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400Â nm when excited at 263Â nm followed by fluorescence emission between 380 and 700Â nm when excited at 351Â nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263Â nm excitation. The decreases in 263Â nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor.
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 153, March 2015, Pages 13-28