کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5434506 1509144 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhancement of electro-chemical properties of TiO2 nanotubes for biological interfacing
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Enhancement of electro-chemical properties of TiO2 nanotubes for biological interfacing
چکیده انگلیسی


- We investigated the possibility of using TiO2 nanotube arrays as a micro/nano electrode for biological interfacing
- Titanium nanotubes morphology has significant impact on their biocompatibility
- We observed that annealing and doping with nitrogen improve the electrical conductivity of the nanotube arrays
- Morphology with 61 nm diameter, 25 nm wall thickness and tube length of 2.25 nm could be good microelectrode candidate
- Nitrogen doped nanotubes show improved properties with low impedance and good biocompatibility

Micro/nano electrodes employing nanotubes has attracted paramount attention in recent years due to their inherent superior mechanical and structural properties. Electrical interfaces with different geometries and sizes have been developed as electrodes for measuring action potentials and investigating neural information processing in neural networks. In this work, we investigated the possibility of using TiO2 nanotube arrays that were grown using electrochemical anodization technique, as a micro/nano electrode for neural interfacing. The morphology of fabricated nanotube arrays were found to be significantly affected by the applied voltage. Annealing and doping of TiO2 nanotube arrays has been performed to improve the structural and electrical properties of the nanotube arrays. It was found that the annealing and doping with nitrogen improve the electrical conductivity of the nanotube arrays. Moreover, the tube diameter and length can be controlled by changing the applied voltage and that can significantly affect the biocompatibility of the nanotube arrays. It was observed that nitrogen doped nanotubes with morphology consisting of 61 nm diameter, 25 nm wall thickness and tube length of 2.25 μm could be good candidate to be used as electrodes for biological interfacing. This is due to the fact that the nitrogen doped nanotubes with aforementioned morphology possess great properties necessary for effective biological interfacing such as low impedance, high capacitance and good biocompatibility.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: C - Volume 77, 1 August 2017, Pages 111-120
نویسندگان
, , , , , , ,