کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5435248 1509149 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The rational designed graphene oxide-Fe2O3 composites with low cytotoxicity
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
The rational designed graphene oxide-Fe2O3 composites with low cytotoxicity
چکیده انگلیسی

Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. In current research, the nanostructured graphene oxide-Fe2O3 composite (GO-Fe2O3) was firstly obtained via a carefully elaborated approach of vacuum freeze-drying. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images revealed that α-Fe2O3 nanoparticles loaded well on the surfaces of graphene. A series of characterization were performed to further elucidate the as-obtained nanomaterial's physicochemical properties. These results suggested the current route could be further extended to obtain the other kinds of two-dimensional materials based composites. For the sake of extending the potential application of herein achieved graphene composites, its cytotoxicity assessment on HeLa cells was systematically investigated. CCK-8 assay in HeLa cells treated by GO-Fe2O3 showed dose- (1-100 μg/ml) and time- (24-48 h) dependent cytotoxicity, which was comparable to that of GO. The excess generation of intracellular reactive oxygen species (ROS) induced by these nanomaterials was responsible for the cytotoxicity. TEM analysis vividly illustrated GO-Fe2O3 internalized by HeLa cells in endomembrane compartments such as lysosomes, and degraded through autophagic pathway. The detrimental biological consequence accompanied by cell internalization was limited. Based on the above results, it expected to render useful information for the development of new and popular strategies to design graphene-based composites, as well as deep insights into the mechanism of graphene-based composites cytotoxicity for further potential application.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: C - Volume 72, 1 March 2017, Pages 659-666
نویسندگان
, , , , ,