کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
543649 | 871681 | 2009 | 10 صفحه PDF | دانلود رایگان |

Scaling of single-gate MOSFET faces great challenges in the nanometer regime due to the severe short-channel effects that cause an exponential increase in the sub-threshold and gate-oxide leakage currents. Double-gate FinFET technology mitigates these limitations by the excellent control over a thin silicon body by two electrically coupled gates. In this paper a variable threshold voltage keeper circuit technique using independent-gate FinFET technology is proposed for simultaneous power reduction and speed enhancement in domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The optimum independent-gate keeper gate bias conditions are identified for achieving maximum savings in delay and power while maintaining identical noise immunity as compared to the standard tied-gate FinFET domino circuits. With the variable threshold voltage double-gate keeper circuit technique the evaluation speed is enhanced by up to 49% and the power consumption is reduced by up to 46% as compared to the standard domino logic circuits designed for similar noise margin in a 32 nm FinFET technology.
Journal: Microelectronics Journal - Volume 40, Issue 11, November 2009, Pages 1531–1540