کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5449650 | 1512533 | 2017 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications
ترجمه فارسی عنوان
طرح بهینه سازی بر اساس تراکم ژن، الگوریتم ژنتیک را برای ارتباطات نور مرئی در محیط داخلی بهبود می بخشد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ارتباطات قابل مشاهده نور، الگوریتم ژنتیک، یکنواختی قدرت، بهینه سازی طرح،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
مواد الکترونیکی، نوری و مغناطیسی
چکیده انگلیسی
For indoor visible light communication system, the layout of LED lamps affects the uniformity of the received power on communication plane. In order to find an optimized lighting layout that meets both the lighting needs and communication needs, a gene density genetic algorithm (GDGA) is proposed. In GDGA, a gene indicates a pair of abscissa and ordinate of a LED, and an individual represents a LED layout in the room. The segmented crossover operation and gene mutation strategy based on gene density are put forward to make the received power on communication plane more uniform and increase the population's diversity. A weighted differences function between individuals is designed as the fitness function of GDGA for reserving the population having the useful LED layout genetic information and ensuring the global convergence of GDGA. Comparing square layout and circular layout, with the optimized layout achieved by the GDGA, the power uniformity increases by 83.3%, 83.1% and 55.4%, respectively. Furthermore, the convergence of GDGA is verified compared with evolutionary algorithm (EA). Experimental results show that GDGA can quickly find an approximation of optimal layout.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optics Communications - Volume 390, 1 May 2017, Pages 76-81
Journal: Optics Communications - Volume 390, 1 May 2017, Pages 76-81
نویسندگان
Huanlin Liu, Xin Wang, Yong Chen, Deqian Kong, Peijie Xia,