کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5480545 | 1399317 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Reprint of: The impact of urbanization on carbon emissions in developing countries: a Chinese study based on the U-Kaya method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Urbanization results in a considerable economic disparity between urban and rural areas in developing countries, which has had a consequent significant impact on CO2 emissions. To accommodate this directly, this paper presents a modified version of the Kaya Identity formula, U-Kaya, that includes a direct urbanization factor to determine the relationship between energy consumption intensity, population growth, urbanization rates, urban and rural GDP per capita and the volume of carbon emissions, for application in the dynamic forecasting of carbon emissions by Monte Carlo simulation. The method is demonstrated in forecasting China's likely carbon emissions in 2020 by three different modes of urbanization policy: the government-dominant mode, market-dominant mode and a hybrid government market-dominant mode. The results indicate that a higher urbanization rate, energy carbon emission coefficient and energy intensity will lead to increased carbon emissions. Finally, three policy implications are identified, comprising the narrowing of the economic gap between urban and rural areas, adjustments to the energy structure and technical innovation, which will provide a valuable reference for developing countries in their efforts to reduce carbon emissions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cleaner Production - Volume 163, Supplement, 1 October 2017, Pages S284-S298
Journal: Journal of Cleaner Production - Volume 163, Supplement, 1 October 2017, Pages S284-S298
نویسندگان
Yuzhe Wu, Jiahui Shen, Xiaoling Zhang, Martin Skitmore, Wisheng Lu,