کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5482323 | 1522313 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A review and analysis of regression and machine learning models on commercial building electricity load forecasting
ترجمه فارسی عنوان
بررسی و تجزیه و تحلیل رگرسیون و مدل های یادگیری ماشین بر پیش بینی بار الکتریکی برق ساختمان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
MLRDBTTDPMAPENARXTMYUNSWUniversity of New South WalesARIMASLRRMSEWWRMPEARMASVRANNRadj2auto regressive - خودکار رگرسیونRegression trees - درختان رگرسیونDew point temperature - دما نقطه شبنمDry bulb temperature - دمای لامپ خشکRelative humidity - رطوبت نسبیSupport vector regression - رگرسیون بردار پشتیبانیMultivariate linear regression - رگرسیون خطی چند متغیرهroot mean squared error - ریشه متوسط خطای مربعTypical meteorological year - سالانه هواشناسی معمولیSolar heat gains - سود خورشیدیArtificial Neural Network - شبکه عصبی مصنوعیNeural networks - شبکه های عصبیadjusted coefficient of determination - ضریب اصلاح تنظیم شدهcoefficient of determination - ضریب تعیینCoefficient of variance - ضریب واریانسSVM - ماشین بردار پشتیبانیSupport vector machine - ماشین بردار پشتیبانیMoving average - متوسط حرکتMean percentage error - متوسط درصد خطاPrism - منشورmean absolute percentage error - میانگین درصد خطای مطلقAuto regressive moving average - میانگین متحرک حرکت خودکارAuto regressive integrated moving average - میانگین متحرک متحرک رگرسیونی خودکارwindow to wall ratio - پنجره نسبت به دیوارMachine learning - یادگیری ماشین
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Electricity load forecasting is an important tool which can be utilized to enable effective control of commercial building electricity loads. Accurate forecasts of commercial building electricity loads can bring significant environmental and economic benefits by reducing electricity use and peak demand and the corresponding GHG emissions. This paper presents a review of different electricity load forecasting models with a particular focus on regression models, discussing different applications, most commonly used regression variables and methods to improve the performance and accuracy of the models. A comparison between the models is then presented for forecasting day ahead hourly electricity loads using real building and Campus data obtained from the Kensington Campus and Tyree Energy Technologies Building (TETB) at the University of New South Wales (UNSW). The results reveal that Artificial Neural Networks with Bayesian Regulation Backpropagation have the best overall root mean squared and mean absolute percentage error performance and almost all the models performed better predicting the overall Campus load than the single building load. The models were also tested on forecasting daily peak electricity demand. For each model, the obtained error for daily peak demand forecasts was higher than the average day ahead hourly forecasts. The regression models which were the main focus of the study performed fairly well in comparison to other more advanced machine learning models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable and Sustainable Energy Reviews - Volume 73, June 2017, Pages 1104-1122
Journal: Renewable and Sustainable Energy Reviews - Volume 73, June 2017, Pages 1104-1122
نویسندگان
B. Yildiz, J.I. Bilbao, A.B. Sproul,