کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
550074 1450760 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A component recommender for bug reports using Discriminative Probability Latent Semantic Analysis
ترجمه فارسی عنوان
یک توصیه کننده جزء برای گزارش های اشکال با استفاده از تجزیه و تحلیل معناشناسی نامتقارن احتمال احتمالی
کلمات کلیدی
گزارش اشکال، مدل موضوعی تبعیض آمیز، توصیه کامپوننت اشکالزدایی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر تعامل انسان و کامپیوتر
چکیده انگلیسی

ContextThe component field in a bug report provides important location information required by developers during bug fixes. Research has shown that incorrect component assignment for a bug report often causes problems and delays in bug fixes. A topic model technique, Latent Dirichlet Allocation (LDA), has been developed to create a component recommender for bug reports.ObjectiveWe seek to investigate a better way to use topic modeling in creating a component recommender.MethodThis paper presents a component recommender by using the proposed Discriminative Probability Latent Semantic Analysis (DPLSA) model and Jensen–Shannon divergence (DPLSA-JS). The proposed DPLSA model provides a novel method to initialize the word distributions for different topics. It uses the past assigned bug reports from the same component in the model training step. This results in a correlation between the learned topics and the components.ResultsWe evaluate the proposed approach over five open source projects, Mylyn, Gcc, Platform, Bugzilla and Firefox. The results show that the proposed approach on average outperforms the LDA-KL method by 30.08%, 19.60% and 14.13% for recall @1, recall @3 and recall @5, outperforms the LDA-SVM method by 31.56%, 17.80% and 8.78% for recall @1, recall @3 and recall @5, respectively.ConclusionOur method discovers that using comments in the DPLSA-JS recommender does not always make a contribution to the performance. The vocabulary size does matter in DPLSA-JS. Different projects need to adaptively set the vocabulary size according to an experimental method. In addition, the correspondence between the learned topics and components in DPLSA increases the discriminative power of the topics which is useful for the recommendation task.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Software Technology - Volume 73, May 2016, Pages 37–51
نویسندگان
, , , , ,