کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
550343 | 872588 | 2013 | 13 صفحه PDF | دانلود رایگان |

ContextThe current validation tests for nuclear software are routinely performed by random testing, which leads to uncertain test coverage. Moreover, validation tests should directly verify the system’s compliance with the original user’s needs. Unlike current model-based testing methods, which are generally based on requirements or design models, the proposed model is derived from the original user’s needs in text through domain-specific ontology, and then used to generate validation tests systematically.ObjectiveOur first goal is to develop an objective, repeatable, and efficient systematic validation test scheme that is effective for large systems, with analyzable test coverage. Our second goal is to provide a new model-based validation testing method that reflects the user’s original safety needs.MethodA model-based scenario test case generation for nuclear digital safety systems was designed. This was achieved by converting the scenarios described in natural language in a Safety Analysis Report (SAR) prepared by the power company for licensing review, to Unified Modeling Language (UML) sequence diagrams based on a proposed ontology of a related regulatory standard. Next, we extracted the initial environmental parameters and the described operational sequences. We then performed variations on these data to systematically generate a sufficient number of scenario test cases.ResultsTest coverage criteria, which are the equivalence partition coverage of initial environment, the condition coverage, the action coverage and the scenario coverage, were met using our method.ConclusionThe proposed model-based scenario testing can provide improved testing coverage than random testing. A test suite based on user needs can be provided.
► We provide a systematic scenario test case generation method for nuclear domain.
► Our test case generation concerns safety behavior of the system under postulated initial events.
► We propose an ontology-based method to convert safety report from a natural language form to a processable structure.
► A visual method to create the scenario testing case can be provided.
► A model-based testing can be produced due to the constructed sequence diagrams.
Journal: Information and Software Technology - Volume 55, Issue 2, February 2013, Pages 344–356