کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5549249 1402859 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب رفتاری
پیش نمایش صفحه اول مقاله
Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide
چکیده انگلیسی


- TCA exhibits neuroprotective effect and improves memory deficit by suppressing neuroinflammation and microglial activation.
- TCA decreases NO production by accelerating the degradation of iNOS mRNA through the interruption of MEK1/2-ERK1/2 pathway.
- TCA represents as a potent therapeutic agent against neuroinflammatory and neurodegenerative disorders.

Microglia activation and neuroinflammation are critically involved in pathogenesis of neurodegenerative disorders. Patients with neurodegenerative disorders often suffer memory impairment and currently there is no effective treatment for inflammation-led memory impairment. Trans-cinnamaldehyde (TCA) isolated from medicinal herb Cinnamomum cassia has been shown to exhibit anti-inflammatory capability. However, the potential of TCA to be used to improve memory impairment under neuroinflammation has not been explored. Primary microglia stimulated by lipopolysaccharide (LPS) were used to evaluate the potential anti-neuroinflammatory effects of TCA by examining the production of nitric oxide (NO), expression of inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines, and activation of MAPKs. A mouse model of LPS-induced memory impairment was established to assess the neuroprotective effects of TCA against memory deficit and synaptic plasticity inhibition by both behavioral tests and electrophysiological recordings. TCA pretreatment decreased LPS-induced morphological changes, NO production and IL-1β release in primary microglia. Decreased NO production was due to the accelerated degradation of iNOS mRNA in LPS-stimulated microglia through TCA's inhibitory effect on MEK1/2-ERK1/2 signaling pathway. TCA was able to reduce the levels of iNOS and phosphorylated ERK1/2 in hippocampus of mice challenged with LPS. Most importantly, TCA significantly lessened memory deficit and improved synaptic plasticity in LPS-challenged mice. This study demonstrates that TCA suppressed microglial activation by destabilizing iNOS mRNA, which leads to improved memory impairment in mice suffering neuroinflammation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuropharmacology - Volume 110, Part A, November 2016, Pages 503-518
نویسندگان
, , , , , , ,