کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5558612 1561151 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP)
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP)
چکیده انگلیسی


- Human skin maximal flux was 11 ± 7 (EH-TBB) & 0.3 ± 0.2 (BEH-TEBP) pmol-eq/cm2/h.
- Predicted systemic bioavailability was < 1% for either chemical after 24 h.
- Skin retained EH-TBB & BEH-TEBP after 24 h dermal exposure.
- EH-TBB was hydrolyzed to tetrabromobenzoic acid; BEH-TEBP was not metabolized.
- Skin contact is an important route of human exposure to EH-TBB & BEH-TEBP.

2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [14C]-EH-TBB or [14C]-BEH-TEBP was applied to human or rat skin at 100 nmol/cm2 using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove “unabsorbed” [14C]-radioactivity after continuous exposure (24 h). “Absorbed” was quantified using dermally retained [14C]-radioactivity; “penetrated” was calculated based on [14C]-radioactivity in media (in vitro) or excreta + tissues (in vivo). Human skin absorbed EH-TBB (24 ± 1%) while 0.2 ± 0.1% penetrated skin. Rat skin absorbed more (51 ± 10%) and was more permeable (2 ± 0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11 ± 7 and 102 ± 24 pmol-eq/cm2/h for human and rat skin, respectively. In vivo, 27 ± 5% was absorbed and 13% reached systemic circulation after 24 h (maximum flux was 464 ± 65 pmol-eq/cm2/h). BEH-TEBP in vitro penetrance was minimal (< 0.01%) for rat or human skin. BEH-TEBP absorption was 12 ± 11% for human skin and 41 ± 3% for rat skin. In vivo, total absorption was 27 ± 9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3 ± 0.2 and 1 ± 0.3 pmol-eq/cm2/h for human and rat skin; in vivo maximum flux for rat skin was 16 ± 7 pmol-eq/cm2/h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [14C]-radioactivity in the perfusion media could not be characterized. < 1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested.Chemical compounds studied in this article2-Ethylhexyl 2,3,4,5-tetrabromobenzoate (PubChem CID: 71316600; CAS No. 183658-27-7 FW: 549.92 g/mol logPest: 7.73-8.75 (12)) Abdallah et al., 2015a. Other published abbreviations for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate are TBB EHTeBB or EHTBB Abdallah and Harrad, 2011.bis(2-ethylhexyl) tetrabromophthalate (PubChem CID: 117291; CAS No. 26040-51-7 FW: 706.14 g/mol logPest: 9.48-11.95 (12)). Other published abbreviations for bis(2-ethylhexyl)tetrabromophthalate are TeBrDEPH TBPH or BEHTBP.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology and Applied Pharmacology - Volume 311, 15 November 2016, Pages 117-127
نویسندگان
, , , , ,