کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
559627 1451754 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recovering non-negative and combined sparse representations
ترجمه فارسی عنوان
بازیابی نمایه های غیر منفی و ترکیبی ضعیف
کلمات کلیدی
سیستم خطی تحت تعریف، نمایندگی های انعطاف پذیر، نمایندگی غیر منفی، تعقیب متعارف مطابقت، راه حل منحصر بفرد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی

The non-negative solution to an underdetermined linear system can be uniquely recovered sometimes, even without imposing any additional sparsity constraints. In this paper, we derive conditions under which a unique non-negative solution for such a system can exist, based on the theory of polytopes. Furthermore, we develop the paradigm of combined sparse representations, where only a part of the coefficient vector is constrained to be non-negative, and the rest is unconstrained (general). We analyze the recovery of the unique, sparsest solution, for combined representations, under three different cases of coefficient support knowledge: (a) the non-zero supports of non-negative and general coefficients are known, (b) the non-zero support of general coefficients alone is known, and (c) both the non-zero supports are unknown. For case (c), we propose the combined orthogonal matching pursuit algorithm for coefficient recovery and derive the deterministic sparsity threshold under which recovery of the unique, sparsest coefficient vector is possible. We quantify the order complexity of the algorithms, and examine their performance in exact and approximate recovery of coefficients under various conditions of noise. Furthermore, we also obtain their empirical phase transition characteristics. We show that the basis pursuit algorithm, with partial non-negative constraints, and the proposed greedy algorithm perform better in recovering the unique sparse representation when compared to their unconstrained counterparts. Finally, we demonstrate the utility of the proposed methods in recovering images corrupted by saturation noise.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 26, March 2014, Pages 21–35
نویسندگان
, , ,