کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5615524 | 1405972 | 2016 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم پزشکی و سلامت
پزشکی و دندانپزشکی
کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In this study, we investigated two multivariate-based classification techniques, Random Forests (RF) and k-nearest neighbor (k-nn), for improved automated detection of AF from the ECG. We have compiled a new database from ECG data taken from existing sources. R-R intervals were then analyzed using four previously described R-R irregularity measurements: (1) the coefficient of sample entropy (CoSEn), (2) the coefficient of variance (CV), (3) root mean square of the successive differences (RMSSD), and (4) median absolute deviation (MAD). Using outputs from all four R-R irregularity measurements, RF and k-nn models were trained. RF classification improved AF detection over CoSEn with overall specificity of 80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 92.8%. k-nn also improved specificity and PPV over CoSEn; however, the sensitivity of this approach was considerably reduced (68.0%).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Electrocardiology - Volume 49, Issue 6, NovemberâDecember 2016, Pages 871-876
Journal: Journal of Electrocardiology - Volume 49, Issue 6, NovemberâDecember 2016, Pages 871-876
نویسندگان
Alan BSc, Dewar D. PhD, Daniel PhD, Raymond R. PhD, Kieran PhD, James PhD,