کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5631104 1580857 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
When math operations have visuospatial meanings versus purely symbolic definitions: Which solving stages and brain regions are affected?
ترجمه فارسی عنوان
هنگامی که عملیات ریاضی دارای معانی متفاوتی در مقابل تعاریف صرفا نمادین است: کدام مراحل حل مسأله و مناطق مغزی تحت تاثیر قرار می گیرند؟
کلمات کلیدی
حل مسئله ریاضی، مراحل روانی، نمادین نمایندگی تمام عیار، نمودارها،
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی


- Learners solved identical problems via symbolic or visuospatial mental strategies.
- HSMM-MVPA analysis applied to fMRI data revealed 4 distinct solving stages.
- Group differences were not evident overall but rather were stage-specific.
- Stages were encode, plan, compute, respond - with group differences in the first 3.
- The visuospatial group had more active imagery/semantic areas to encode & compute.

How does processing differ during purely symbolic problem solving versus when mathematical operations can be mentally associated with meaningful (here, visuospatial) referents? Learners were trained on novel math operations (↓, ↑), that were defined strictly symbolically or in terms of a visuospatial interpretation (operands mapped to dimensions of shaded areas, answer = total area). During testing (scanner session), no visuospatial representations were displayed. However, we expected visuospatially-trained learners to form mental visuospatial representations for problems, and exhibit distinct activations. Since some solution intervals were long (~10 s) and visuospatial representations might only be instantiated in some stages during solving, group differences were difficult to detect when treating the solving interval as a whole. However, an HSMM-MVPA process (Anderson and Fincham, 2014a) to parse fMRI data identified four distinct problem-solving stages in each group, dubbed: 1) encode; 2) plan; 3) compute; and 4) respond. We assessed stage-specific differences across groups. During encoding, several regions implicated in general semantic processing and/or mental imagery were more active in visuospatially-trained learners, including: bilateral supramarginal, precuneus, cuneus, parahippocampus, and left middle temporal regions. Four of these regions again emerged in the computation stage: precuneus, right supramarginal/angular, left supramarginal/inferior parietal, and left parahippocampal gyrus. Thus, mental visuospatial representations may not just inform initial problem interpretation (followed by symbolic computation), but may scaffold on-going computation. In the second stage, higher activations were found among symbolically-trained solvers in frontal regions (R. medial and inferior and L. superior) and the right angular and middle temporal gyrus. Activations in contrasting regions may shed light on solvers' degree of use of symbolic versus mental visuospatial strategies, even in absence of behavioral differences.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 153, June 2017, Pages 319-335
نویسندگان
, , ,