کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
563522 1451939 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine
ترجمه فارسی عنوان
مدلسازی کارآمد ژیروسکوپ فیبر نوری با استفاده از EEMD و دستگاه یادگیری افراطی بهبود یافته
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• We propose method to model FOG drift under dramatic temperature variation.
• We propose a novel criterion for selecting relevant modes of EMD.
• We verify that extreme learning machine can model FOG short term drift.
• We establish new prediction structure for complicate FOG signal.

In order to model the drift of fiber optic gyroscope (FOG) efficiently, a novel multi-scale prediction method is proposed by utilizing signal decomposition. Analytical expression of thermally induced drift of FOG is given first, which forms our theoretical basis of multi-scale prediction. Newly proposed bounded EEMD is used to decompose drift signal into a series of stationary modes, and then an adaptive feature selection criterion is proposed to construct distinct sub-series. Extreme learning machine is used to train these sub-series respectively, and a hybrid model is then obtained by adding up all the sub-models. Experiments have shown that, compared with the state-of-the-art methods, the proposed method improves prediction accuracy by two orders and achieves much faster speed in training process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 128, November 2016, Pages 1–7
نویسندگان
, ,