کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
569411 876605 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
پیش نمایش صفحه اول مقاله
Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
چکیده انگلیسی

Estimates of sediment load are required in a wide spectrum of water resources engineering problems. The nonlinear nature of suspended sediment load series necessitates the utilization of nonlinear methods for simulating the suspended sediment load. In this study artificial neural networks (ANNs) are employed to estimate the daily total suspended sediment load on rivers. Two different ANN algorithms, the feed-forward back-propagation (FFBP) method and the radial basis functions (RBF), were used for this purpose. The neural networks are trained using rainfall flow and suspended sediment load data from the Juniata Catchment, USA. The simulations provided satisfactory simulations in terms of the selected performance criteria comparing well with conventional multi-linear regression. Similarly, the simulated sediment load hydrographs obtained by two ANN methods are found closer to the observed ones again compared with multi-linear regression.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 22, Issue 1, January 2007, Pages 2–13
نویسندگان
, ,