کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5742124 1617388 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analyzing the effects of estuarine freshwater fluxes on fish abundance using artificial neural network ensembles
ترجمه فارسی عنوان
تحلیل تأثیر شیوه آب شیرینی رودخانه ای بر فراوانی ماهیان با استفاده از شبکه عصبی مصنوعی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی


- Evaporation and precipitation affect estuarine freshwater balance and fish abundance.
- Including multiple freshwater fluxes improves the prediction of fish abundance.
- Artificial neural network ensembles outperform multilinear regression models.
- Data-driven approaches can benefit coastal fishery and freshwater regulation.

Decreased estuarine freshwater inflow can adversely impact commercially and recreationally important fisheries as many fish species utilize estuaries during a portion of their life. To ameliorate effect on estuarine fisheries, regression models using fish catch and freshwater inflow have been implemented to determine minimum flow necessary to sustain these populations. These models typically use streamflow data, with no correction for evaporation and precipitation. Our models including evaporation and precipitation developed using artificial neural network (ANN) ensembles had nearly 50% better classification accuracy compared to regression model using flow. This ANN ensemble method was successfully applied to the Nueces Estuary in the United States. It can improve the decision-making processes of freshwater regulation and fishery management in many coastal regions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Modelling - Volume 359, 10 September 2017, Pages 103-116
نویسندگان
, ,