کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5750393 1619697 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimation of total CH4 emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Estimation of total CH4 emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model
چکیده انگلیسی


- Total CH4 emission from Japanese rice paddies were estimated by a meta-modelling approach.
- Annual CH4 emissions for 1990 to 2010 ranged from 323 to 455 kt C yr− 1.
- The new estimates are higher than the previous estimates in NIR, because of under estimation by the previous method.

Methane (CH4) is a greenhouse gas, and paddy fields are one of its main anthropogenic sources. In Japan, country-specific emission factors (EFs) have been applied since 2003 to estimate national-scale CH4 emission from paddy field. However, these EFs did not consider the effects of factors that influence CH4 emission (e.g., amount of organic C inputs, field drainage rate, climate) and can therefore produce estimates with high uncertainty. To improve the reliability of national-scale estimates, we revised the EFs based on simulations by the DeNitrification-DeComposition-Rice (DNDC-Rice) model in a previous study. Here, we estimated total CH4 emission from paddy fields in Japan from 1990 to 2010 using these revised EFs and databases on independent variables that influence emission (organic C application rate, paddy area, proportions of paddy area for each drainage rate class and water management regime). CH4 emission ranged from 323 to 455 kt C yr− 1 (1.1 to 2.2 times the range of 206 to 285 kt C yr− 1 calculated using previous EFs). Although our method may have overestimated CH4 emissions, most of the abovementioned differences were presumably caused by underestimation by the previous method due to a lack of emission data from slow-drainage fields, lower organic C inputs than recent levels, neglect of regional climatic differences, and underestimation of the area of continuously flooded paddies. Our estimate (406 kt C in 2000) was higher than that by the IPCC Tier 1 method (305 kt C in 2000), presumably because regional variations in CH4 emission rates are not accounted for by the Tier 1 method.

122

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volumes 601–602, 1 December 2017, Pages 346-355
نویسندگان
, , , , , , ,