کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5751240 1619709 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source
ترجمه فارسی عنوان
غلظت و الگوهای مواد پرفروفیالکلی و پلی فلوئوروکلیک در یک رودخانه و سه ایستگاه تصفیه آب آشامیدنی در نزدیکی و دور از یک منبع تولید عمده
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
چکیده انگلیسی


- River and well fields were contaminated by the release of PFASs from a facility.
- A poorly studied PFAS (6:2 FTAB) was the predominant PFAS found in the river.
- The oxidative conversion method showed evidence for the presence of PFCA precursors.
- Conventional water treatments were unable to remove PFASs efficiently.
- Ozonation and activated carbon filtration may lead to the breakdown of certain FTs.

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota and humans. Drinking water is a route of exposure for populations using water contaminated by PFAS discharges. This research entailed measuring concentrations, mass flows and investigating the fate of dozens PFASs in a river receiving effluents from a fluorochemical manufacturing facility. To measure the total concentration of perfluoroalkyl carboxylic acid (PFCA) precursors, an oxidative conversion method was used. Several dozen samples were collected in the river (water and sediment), in drinking water resources and at different treatment steps on four sampling dates. One PFCA and three fluorotelomers (FTs) were detected up to 62 km downstream from the manufacturing facility. 6:2 Fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) was the predominant PFAS with a mass flow of 3830 g/day 5.2 km downstream from the facility. At all sampling points, PFAS concentrations in sediment were quite low (< 6 ng/g dw). Five of the 11 investigated wells showed detectable concentrations of PFASs. Interestingly, their profile patterns were different from those observed in the river, suggesting a transformation of PFCA precursors in the sediments of alluvial groundwater. Conventional drinking water treatments (aeration, sand or granular activated carbon filtration, ozonation or chlorination) did not efficiently remove PFASs. Furthermore, an increase in concentration of certain PFASs was observed after ozonation, suggesting that some FTs such as 6:2 FTAB can break down.Only nanofiltration was able to remove all the analyzed PFASs. In the treated water, total PFAS concentrations never exceeded 60 ng/L. The oxidative conversion method revealed the presence of unidentified PFCA precursors in the river. Therefore, 18 to 77% of the total PFCA content after oxidation consisted of unidentified chemical species. In the treated water, these percentages ranged from 0 to 29%, relatively and reassuringly low values.

206

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 583, 1 April 2017, Pages 393-400
نویسندگان
, , , , , , , ,