کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5752921 | 1620309 | 2017 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quantifying the uncertainties of China's emission inventory for industrial sources: From national to provincial and city scales
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علم هواشناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A comprehensive uncertainty analysis was conducted on emission inventories for industrial sources at national (China), provincial (Jiangsu), and city (Nanjing) scales for 2012. Based on various methods and data sources, Monte-Carlo simulation was applied at sector level for national inventory, and at plant level (whenever possible) for provincial and city inventories. The uncertainties of national inventory were estimated at â17-37% (expressed as 95% confidence intervals, CIs), â21-35%, â19-34%, â29-40%, â22-47%, â21-54%, â33-84%, and â32-92% for SO2, NOX, CO, TSP (total suspended particles), PM10, PM2.5, black carbon (BC), and organic carbon (OC) emissions respectively for the whole country. At provincial and city levels, the uncertainties of corresponding pollutant emissions were estimated at â15-18%, â18-33%, â16-37%, â20-30%, â23-45%, â26-50%, â33-79%, and â33-71% for Jiangsu, and â17-22%, â10-33%, â23-75%, â19-36%, â23-41%, â28-48%, â45-82%, and â34-96% for Nanjing, respectively. Emission factors (or associated parameters) were identified as the biggest contributors to the uncertainties of emissions for most source categories except iron & steel production in the national inventory. Compared to national one, uncertainties of total emissions in the provincial and city-scale inventories were not significantly reduced for most species with an exception of SO2. For power and other industrial boilers, the uncertainties were reduced, and the plant-specific parameters played more important roles to the uncertainties. Much larger PM10 and PM2.5 emissions for Jiangsu were estimated in this provincial inventory than other studies, implying the big discrepancies on data sources of emission factors and activity data between local and national inventories. Although the uncertainty analysis of bottom-up emission inventories at national and local scales partly supported the “top-down” estimates using observation and/or chemistry transport models, detailed investigations and field measurements were recommended for further improving the emission estimates and reducing the uncertainty of inventories at local and regional scales, for both industrial and other sectors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 165, September 2017, Pages 207-221
Journal: Atmospheric Environment - Volume 165, September 2017, Pages 207-221
نویسندگان
Yu Zhao, Yaduan Zhou, Liping Qiu, Jie Zhang,