کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5754000 1620716 2017 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus
ترجمه فارسی عنوان
استفاده از یون های هوای تولید شده از تخلیه کرونا برای فیلتراسیون ویروس های هوا و غیر فعال سازی ویروس فیلتر شده
کلمات کلیدی
ویروس هوابرد یون هوا، فیلتر کردن، غیر فعال کردن
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
چکیده انگلیسی
The effect of corona discharge-generated air ions on the filtration of aerosolized bacteriophage MS2 was studied. A carbon-fiber ionizer was installed upstream of a medium-efficiency air filter to generate air ions, which were used to charge the virus aerosols and increase their filtration efficiency. After the virus aerosols were captured by the filter for a certain time interval, they were exposed to a newly incoming air ion flow. Captured virus particles were detached from the filter by sonication, and their antiviral efficiency due to air ions was calculated by counting the plaque-forming units. The antiviral efficiency increased with ion exposure time and ion concentration. When the concentration of positive air ions was 107 ions/cm3, the antiviral efficiencies were 46.1, 78.8, and 83.7% with exposure times of 15, 30, and 45 min, respectively. When the ionizer was operated in a bipolar mode, the number concentrations of positive and negative ions were 6.6×106 and 3.4×106 ions/cm3, respectively, and the antiviral efficiencies were 64.3, 89.1, and 97.4% with exposure times of 15, 30, and 45 min, respectively. As a quantitative parameter for the performance evaluation of air ions, the susceptibility constant of bacteriophage MS2 to positive, negative, bipolar air ions was calculated as 5.5×10−3, 5.4×10−3 and 9.5×10−3, respectively. These susceptibility constants showed bipolar ion treatment was more effective about 1.7 times than unipolar ion treatment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Aerosol Science - Volume 107, May 2017, Pages 31-40
نویسندگان
, , ,