کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5754939 | 1621202 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
SMAP radar receiver measures land surface freeze/thaw state through capture of forward-scattered L-band signals
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Quantifying freeze/thaw status of the landscape (soils and vegetation) is important for identifying the availability of liquid water in the high latitudes to support ecosystem processes controlling carbon sequestration and release. A better understanding of the seasonal transition of high latitude landscapes between frozen and thawed states is therefore critical for predicting carbon cycle feedbacks in a warming climate. However, observations of freeze/thaw state are not at sufficient temporal and spatial resolution to observe fast (~Â days-weeks) transitions in highly heterogeneous regions. Here, we present new evidence that reflected Global Navigation Satellite System (GNSS) signals captured by the SMAP radar receiver have the potential to quantify changes in high-latitude soil freeze/thaw state at kilometer-scale resolution. Boreal wetland observations indicate a ~Â 10Â dB seasonal difference in the signal-to-noise ratio (SNR), in agreement with simulations from a simple reflectivity model. Our analysis indicates that ground-reflected GNSS signals as a form of L-band bistatic radar could be a robust observable to quantify soil freeze/thaw state at process-relevant scales. We describe the caveats and potential limitations of this approach, and highlight areas for continuing research.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 198, 1 September 2017, Pages 333-344
Journal: Remote Sensing of Environment - Volume 198, 1 September 2017, Pages 333-344
نویسندگان
Clara Chew, Stephen Lowe, Nicholas Parazoo, Stephan Esterhuizen, Shadi Oveisgharan, Erika Podest, Cinzia Zuffada, Adam Freedman,