کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5756597 1622618 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of brominated flame retardants from e-waste components in China
ترجمه فارسی عنوان
ویژگی های بازدارنده های شعله بروموخته از اجزاء الکترونیکی در چین
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
چکیده انگلیسی
Many studies show that high levels of many toxic metals and persistent and bio-accumulative chemicals have been found in electronic waste (e-waste) dismantling sites and their surrounding environmental media. Both flame-retardant plastic housing materials and printed circuit boards (PCBs) could be the major contributors. However, relatively little work has focused on the use or content of toxic substances and their changing in scrap housing materials and PCBs from home appliances. This study evaluated the existence of brominated flame retardants (BFRs, including polybrominated diphenyl ethers (PBDEs) and Tetrabromobisphenol-A (TBBPA)) in housing plastics and PCBs from home appliances collected from various e-waste recyclers in China. These were then analyzed for the potential migration of BFRs from the e-waste components into their recycled products. The results show that both PBDEs and TBBPA were found with high level in most of e-waste samples, indicating that the widespread use of BFRs in home appliances are entering into the end-of-life stage. For the plastics samples, CRT TVs and LCD monitors should be given priority for the control of BFRs. Regarding PBDEs, the dominant congeners of BDE-209 in the plastics samples contributed 90.72-93.54% to the total concentrations of PBDEs, yet there are large variations for PCBs samples: BDE-28, -47, -99, and -153 were also important congeners compositions, except for BDE-209. Compared with previous studies, the BFRs concentrations in current Chinese e-waste are trending to decline. This study also found that BFRs in housing plastics and PCBs will be transferred into the recycled products with other purpose use, and the new products could have highly enriched capacities for BFRs. The obtained results could be helpful to manage e-waste and their components properly in order to minimize associated environmental and health risks of BFRs, particularly for their further reuse.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Waste Management - Volume 68, October 2017, Pages 498-507
نویسندگان
, , , , , , , , ,